Des années 60 aux années 80 le programme français reposait sur les réacteurs à eau pressurisée (REP) avec un développement significatif des réacteurs à neutrons rapides (RNR) fonctionnant en mode surgénérateur. Il était envisagé qu'en l'an 2000 les RNR surgénérateurs représenteraient 30% du parc. C'est la raison du développement civil du retraitement des combustibles REP avec la construction des usines du site Hague. Valéry Giscard d'Estaing est allé jusqu'à déclarer (sur Europe 1, le 25 janvier 1980) que, grâce au surgénérateur, on aurait un gisement énergétique équivalent à celui de l'Arabie Saoudite en territoire français.

 

Les surgénérateurs

A la différence des centrales nucléaires «conventionnelles», et à l'inverse de tout ce qui a été déclaré par la propagande officielle, les surgénérateurs peuvent, par accident, faire explosion à la façon d'une bombe atomique. En effet, ils peuvent étre le siège d'une réaction en chaîne dite «surcritique prompte en neutrons rapides», particularité que seule la bombe atomique possède également.

"Excursions nudéaires"
     La variété d'explosion atomique dont un surgénérateur peut être le siège porte le nom rassurant d '«excursion nucléaire». Plusieurs excursions nucléaires successives peuvent se produire. Le problème est de savoir si ces explosions pourront être contenues par les enceintes prévues autour du réacteur. Les experts ont donc cherché à évaluer la puissance de ces explosions.
     Pour le réacteur SuperPhénix, qui doit être installé à Malville, à 44 kilomètres de Lyon, les estimations quant à l'équivalent en explosifs classiques de l'excursion nucléaire vont de quelques tonnes à quelques dizaines de tonnes d'explosifs si l'on considère l'énergie totale libérée, de quelques centaines de kilogrammes à quelques tonnes pour l'énergie mécanique. Ces valeurs selon les optimistes, sont à la limite de ce que peuvent contenir les enceintes prévues. 
De plus, ces résultats ont été obtenus à l'aide de modèles de calcul comportant de nombreuses hypothèses simplificatrices, et reposent sur une base expérimentale extrêmement mince. En effet SuperPhénix comportera environ 35 tonnes de combustible nucléaire, dont
5 tonnes de plutonium, et les expériences d'excursion nucléaires n'ont jamais concerné que quelques kilogrammes de matière fissile. Si l'on se rappelle les difficultés du calcul de l'explosion d'une structure beaucoup plus simple, celle de la bombe atomique, et le nombre d'expériences qui ont été nécessaires pour la mettre au point, on ne peut qu'être très sceptique quant aux résultats des calculs relatifs aux excursions nucléaires.
     Il est clair qu'étant donné l'extraordinaire toxicité radioactive des aérosols de plutonium, l'expulsion même partielle des 5 tonnes de plutonium de SuperPhénix dispersés ou volatilisés par l'excursion nucléaire constituerait une catastrophe sans précédent.
[1/1 000 000 ème de gr de plutonium inhalé suffit à provoquer un cancer, 8 kilos sont suffisant pour faire une bombe atomique de type Nagasaki]

Déformation brutale du coeur...
     Sur les sept surgénérateurs producteurs d'électricité qui ont déjà fonctionné, trois (EBR1, Enrico Fermi, BN 350) ont eu de graves accidents, proportion jamais vue dans aucune autre filière. Les documents officiels français indiquent que la valeur numérique de la probabilité d'excursion nucléaire n'a pas été calculée. De nombreuses causes peuvent être à l'origine d'excursions nucléaires. On envisage par exemple une déformation brutale du coeur par propagation rapide d'une rupture d'assemblage, déformation qui entraverait la circulation du sodium réfrigérant et empêcherait les barres de contrôle de fonctionner. On peut craindre également la formation d'une masse surcritique locale à la suite d'une fusion partielle, ce qui provoquerait une compaction du reste du coeur et une exursion nucléaire d'ensemble. On peut envisager enfin des pannes simultanées d'organes essentiels, l'éjection de barres de contrôle, des fautes au déchargement, un sabotage.
     Les pays étrangers font preuve d'une grande prudence. Les Etats-Unis, à la suite des accidents d'EBR1 et d'Enrico Fermi, hésitent à lancer la filière des surgénérateurs. La Grande-Bretagne construit ses surgénérateurs dans la seule région quasi-désertique qu'elle possède, l'extrême-Nord de l'Ecosse. L'URSS n'ose pas passer directement de 350 à plus de 1.000 Mégawatts électriques, et construit un réacteur de 600 Mégawatts électriques.

Il ne saurait exploser.
     En France, des dirigeants incompétents et des technocrates audacieux ont décidé de sauter allègrement de 250 (Phénix) à 1.200 Mégawatts électriques (SuperPhénix), et d'implanter entre Lyon, Grenoble et Genève le premier surgénérateur géant. Ces responsables formulent des assertions n'ayant aucun rapport avec la réalité, telles que «on notera tout d'abord qu'il est physiquement impossible à un réacteur nucléaire d'exploser comme une bombe atomique» (rapport d'Ornano, novembre 1974), ou «un réacteur nucléaire n'a, en effet, rien à voir avec une bombe atomique. Il ne saurait exploser» (l'Energie Nucléaire, Délégation générale à l'information, avril 1975). Ils glissent dans leurs publicités des phrases mensongères: «La centrale atomique utilise un combustible impropre à une fission explosive» (publicité EDF, Paris-Match, juin 1975). Tout cela est contredit par ces phrases du style télégraphique, qui concernent les surgénérateurs:
     Potentiel accidentel d'excursion nucléaire prompte critique sous l'effet de compaction, libérant de l'énergie mécanique sous forme explosive (Commissariat à l'Energie Atomique, Bulletin d'Informations Scientifiques et Techniques, n°208, novembre 1975, page 33) et: «Potentiel d'explosions dues à interactions violentes Na - UO2 fondu. Processus peut se coupler avec explosion nucléaire» (idem, page 34).

La possibilité d'explosion nucléaire du coeur d'un surrégénérateur a été reconnue explicitement, tant par le C.E.A. français (bulletin d'informations scientifiques et techniques n° 208, novembre 1975, p. 33-34), que par la très officielle Commission Royale britannique sur la pollution de l'environnement (6e rapport, septembre 1976, paragraphe 15).
Lire: Quelques vérités (pas toujours bonnes à dire) sur les surgénérateurs (en PDF) Sciences & Vie n°781, octobre 1982.

On leur a menti...
     Les populations de la région Lyon Grenoble Genève ont-elles été consultées quant à l'implantation de SuperPhénix à Malville ? Ont-elles été simplement informées des problèmes posés par la sécurité de ce réacteur ? La réponse est malheureusement négative: elles n'ont pas été consultées, elles n'ont pas été informées, et de plus on leur a menti.

Extrait de la Gazette Nucléaire n°1, juin 1976.
Publication du GSIEN (Groupement des Scientifiques pour l'Information sur l'Energie Nucléaire)



Le programme nucléaire français actuel  implique  le développement rapide des surgénérateurs

     Compte tenu de la mauvaise utilisation de l'uranium naturel dans les filières à eau légère et des faibles ressources mondiales d'uranium, le développement du nucléaire peut se faire suivant deux stratégies :

     1. Le nucléaire est considéré comme une énergie d'appoint qui permettra d'attendre l'arrivée des énergies inépuisables solaire, géothermie. Son développement sera lent afin d'économiser l'uranium. Il sera modeste afin de dégager les moyens nécessaires au développement industriel des énergies nouvelles.

     2. Le nucléaire est développé à marche forcée. C'est la stratégie actuelle de la France. Selon cette stratégie, le nucléaire représenterait 25% de l'énergie primaire en 1985, 40% en l'an 2000. A ce rythme de développement la France épuisera ses propres réserves d'uranium en dix ans. Il faut donc trouver rapidement un relais aux centrales nucléaires actuelles: ce relais, c'est le surgénérateur. Un programme ambitieux a donc été lancé avec comme première étape la construction, à Creys-Malville (Isère) du surgénérateur géant Superphénix (1200 MWe) qui devrait bientôt être suivi de plusieurs surgénérateurs de 1800 MWe dans la région de Chalons-sur-Saône.

     Ce programme est officiellement justifié par des raisons techniques: le caractère limité des réserves d'uranium, l'avance technologique - incontestable - du CEA dans ce domaine. Mais comme toujours les arguments techniques masquent les choix économiques et politiques faits par les grands groupes industriels, en l'occurence Creusot-Loire. Ce groupe qui a déjà - via Framatome - le monopole de la construction des centrales à eau légère (PWR), aura - via Novatome - la haute main sur la construction des surgénérateurs. Le rôle dominant de Creusot-Loire dans Novatome a été obtenu à la suite:

     1. d'une restructuration industrielle à son profit: dans le secteur sidérurgique, prise de contrôle de NEYRPIC à la suite d'un accord avec Alsthom en décembre 1976, accord avec CEM et Alsthom pour la construction des turboalternateurs.

     2. du démantèlement des services compétents du CEA: le transfert de l'équipe d'ingénieurs de Superphénix (composée d'agents du CEA (Technicatome) et de l'ex-GAAA) à Novatome devrait intervenir dans les deux mois. Les compétences du CEA, acquises grâce à l'argent du contribuable français, sont ainsi offertes en cadeau au baron Empain!
     La logique du programme de développement  forcené  de  l'énergie  nucléaire conduit les pouvoirs publics à faire des impasses, à griller des étapes.
Tout se passe comme si on voulait rendre le choix du «tout nucléaire» irréversible (avant l'arrivée de la gauche au pouvoir ?!). L'opposition à la construction du Superphénix se développe-t-elle? On essaie de la prendre de vitesse. «Nous ressentons de la manière la plus nette que la meilleure façon de contrecarrer la contestation se développant au plan local et national est d'engager au plus vite, de manière irréversible l'opération et de rendre publique cette décision» Marcel Boiteux, septembre 1976 (information « provenant » de la Nersa).
     Effectivement,  avant que le décret d'autorisation de création (terme de la procédure de sécurité) et que la déclaration d'utilité publique ne soient signés, les travaux de génie civil ont commencé sur le site le 15 novembre 1976 (les fondations sont actuellement pratiquement terminées). Bel exemple de politique du fait technocratique accompli.

  Remarque sur la combinaison de travail marquée "SPX 1":
En 1977, la
commission Péon (production d'électricité d'origine nucléaire) avait prévu d'installer 13 à 19 surgénérateurs avant l'an 2000 en France, mais les surgénérateurs de grosse puissance comme Superphénix (seul prototype de surgénérateur installé à l'échelle industrielle dans le monde) se révélèrent "délicats" à mettre au point... et beaucoup plus chers à construire que prévu... La phase industrielle (Superphénix 2) prévoyait, en l'an 2000, 37 surgénérateurs sur 158 réacteurs nucléaires !!!

Le développement rapide de surgénérateurs est-il acceptable ? est-il réaliste ?

     Il peut être tentant, pour résoudre la. pénurie prévisible d'uranium, d'avoir recours aux surgénérateurs: ils permettent, théoriquement, de multiplier les réserves d'uranium par un facteur 50 au moins. Mais quand on passe de la théorie à la pratique, les perspectives sont moins brillantes:

     1. Les surgénérateurs sont encore plus inquiétants que les PWR
     La matière fissile y est si concentréè qu'il peut s'y produire des explosions de type nucléaire (voir plus loin un extrait du rapport d'une très officielle commission britannique). Le réfrigérent (sodium, liquide) explose au contact de 1'eau et prend feu au contact de l'air. Le développement des surgénérateurs nous fait entrer dans la société du plutonium. Des quantités industrielles de ce produit seront manipulées.

     2. Leur fonctionnement est très difficile à assurer
     Sept surgénérateurs producteurs d'électricité ont fonctionné dans le monde
     - EBR1 (USA; 0,2 MWe) a été détruit en 1955 par un accident (fusion du coeur).
     - EBR2 (USA, 16 MWe) fonctionne correctement depuis 1963.
     - Enrico Fermi (USA, 66 MWe) a démarré en 1963. Il a subi en 1966 une fusion partielle qui aurait pu conduire à une, catastrophe. Remis en service en 1968, il a été définitivement arrêté depuis.
     - DFR (Grande-Bretagne, 15 MWe) a démarré en 1959. Il a été arrêté en 1976 après un fonctionnement assez satisfaisant.
     - PFR (Grande-Bretagne, 250 MWe) a démarré en 1975 avec deux ans de retard. Il n'a pas encore atteint sa puissance maximale en raison de nombreux essais technologiques. [Lire: Le surgénérateur tel que le critiquent officiellement les Anglais, Science & Vie n°711 (en PDF), décembre 1976 et Si un surrégénérateur explosait..., Sciences & Avenir n°373 (en PDF), mars 1978.]
     - BM 350 (URSS, équivalent à 350 MWe) a démarré juste avant Phénix, mais a eu plusieurs accidents dus au sodium en 1974. Depuis, il a un fonctionnement irrégulier.
     - Phénix (France, 250 MWe) a connu un début remarquable en 1974-1975, mais ses performances se sont dégradées sans cesse depuis. Arrêt du 24.11.75 au 13.12.75 pour fuite dans un générateur de vapeur, fonctionne à puissance réduite de juillet à octobre 1976 pour fuite de sodium secondaire; arrêt complet depuis le 5 octobre 76 pour fuite de sodium dans un autre échangeur. Il devrait redémarrer au début de mai 1977. On nous dit que la panne qui a occasionné cet arrêt n'est pas grave, ceci est tout à fait exact, mais alors quelle aurait été la durée de l'arrêt si la panne avait été plus sérieuse ?

Phénix à Marcoule dans le Gard.

     3. Le combustible des surgénérateurs n'existera peut-être jamais à l'échelle industrielle
     Ce combustible est le plutonium. Ce corps n'existe pas dans la nature; il faut l'extraire des combustibles irradiés provenant actuellement des réacteurs PWR, plus tard des surgénérateurs. Or, pour le moment, on ne sait pas extraire industriellement le plutonium produit par le PWR.

     4. Les crédits alloués aux surgénérateurs hypothèquent l'avenir
     Le coût de Superphénix ne cesse d'augmenter: de 3 MF au départ il dépasse actuellement 5 MF. Il est évident que la somme des études de toutes natures et des investissements indispensables pour amener la filière à un stade véritablement industriel est considérable: on a vu que toute une série de problèmes techniques complexes ne sont pas encore résolus: sécurité, retraitement des combustibles, amélioration du coefficient de surgénération. Les résoudre demandera du temps et de l'argent, ceci d'autant plus que, comme nous le verrons plus loin, nous sommes seuls à mettre au point cette filière. Consciente du problème, la direction d'EDF, qui a déjà beaucoup de difficultés à financer le programme de construction des PWR, refuse de payer le surcoût que représente la mise au point de Superphénix.

Que se passe-t-il à l'étranger ?

     La Grande-Bretagne projetait de construire, dans l'extrême-nord de 1'Ecosse, un surgénérateur de la taille de Superphénix. En septembre 1976, la très officielle Royal Commission on Environnemental Pollution remettait un rapport qui constitue un réquisitoire, non pas contre l'énergie nucléaire, mais contre un développement important des surgénérateurs. Citons les paragraphes 115 et 116 (traduction de Charles Noël Martin)

115. Tout comme le réacteur thermique, le réacteur à neutrons rapides n'est possible qu'à cause d'une particularité de la nature: l'existence des neutrons différés (neutrons émis par des radios-isotopes quelques secondes après la fission du noyau d'uranium). Si la réactivité se trouve encore augmentée notablement et très rapidement, les mécanismes de contrôle de la réactivité risquent d'être dépassés; il existe alors une probabilité théorique de formation accidentelle d'un sous-ensemble critique aux seuls neutrons rapides et prompts, c'est-à dire non différés.
     C'est, sur le plan technique, le principe même d'une explosion nucléaire, bien que le processus de la réaction en chaîne soit nettement plus lent que dans le cas provoqué de la bombe atomique et, de ce fait, l'énergie libérée en serait d'autant moindre.
On ne sait pas encore très exactement si une explosion de ce type aboutirait à la vaporisation du combustible; on suppose en général qu'il pourrait l'être et les plans des réacteurs sont faits en prévision de cette éventualité extrême. Si cette sécurité s'avérait insuffisante, non seulement l'iode et le césium seraient libérés, mais également des quantités substantielles de produit de fission  non volatils, tels le strontium, ainsi que du plutonium. Au cas où le réacteur serait construit dans un endroit habité, les pertes en vies humaines seraient très grandes. La raison pour laquelle cela peut se produire dans un réacteur rapide et non dans un réacteur thermique vient de ce que le premier a son combustible dans un état initial de réactivité en dessous du maximum de réactivité. Si tout le combustible d'un réacteur thermique se trouvait fondu en une seule masse, sa réactivité tomberait car il n'y aurait pas de modérateur (qui freine les neutrons) pour accroître la réactivité. Par contre, dans le cas de surgénérateur, tout le combustible fondu en une masse compacte la verra dans un état de réactivité maximum.

116. Les deux fusions du coeur dans les FBR (Fast Breeder Reactor) américains ont été heureusement contenues et il n'y a pas eu libération de radioactivité à l'extérieur mais une fusion non contenue aurait des conséquences tellement catastrophiques (voir le paragraphe 303) que l'opinion prévaut selon laquelle les réacteurs rapides ne pourront jamais apporter une contribution majeure à un programme de puissance, du moins pas avant que les processus sous-jacents aux modifications de géométrie du coeur soient parfaitement connus. Les recherches dans ce champ d'idées sont activement menées sans qu'on sache encore maintenant s'il sera jamais possible de dessiner un jour un réacteur de ce type qui élimine complètement la possibilité d'un sursaut local d'énergie capable de rompre les protections les plus fortes soient-elles.

     A la suite de ce rapport, la décision de construire ce surgénérateur, qui devait être prise à l'automne dernier, a été reportée à une date indéterminée par le ministre britannique de l'industrie.
     L'URSS avait sagement choisi de passer de 350 MWe (BN 300) à 600 MWe (BN 600 en construction à Bielogrask, dans l'Oural). Des bruits non confirmés indiquent que l'URSS arrêterait son programme de surgénérateur en raison de difficultés pour maîtriser les problèmes du générateur de vapeur. Cette décision serait cohérente avec le grand programme de mises en valeur des gigantesques ressources pétrolières et gazières de la Sibérie.

BN 600 à Beloyarsk.
     Comme nous l'avons déjà indiqué, les Etats-Unis ont décidé, pour des raisons politiques (risques de prolifération de l'arme nucléaire), mais aussi économiques (difficultés industrielles et coût du retraitement) de ne pas retraiter les combustibles irradiés. Cette décision condamne actuellement tout programme de développement de surgénérateurs. Récemment le président Carter a même porté un coup très grave au projet américain de Clinch-River (projet de prototype de surgénérateur) en déclarant que celui-ci «portait un risque potentiel pour la sécurité»

Superphénix est un nouveau Concorde

     La France développe, encore une fois une technique dont personne ne veut. Mais la comparaison avec Concorde s'arrête là